Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Intervalo de año de publicación
1.
JBMR Plus ; 7(12): e10843, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38130754

RESUMEN

Type 2 diabetes mellitus (T2DM) increases risk of fractures due to bone microstructural and material deficits, though the mechanisms remain unclear. Preclinical models mimicking diabetic bone disease are required to further understand its pathogenesis. The TALLYHO/JngJ (TH) mouse is a polygenic model recapitulating adolescent-onset T2DM in humans. Due to incomplete penetrance of the phenotype ~25% of male TH mice never develop hyperglycemia, providing a strain-matched nondiabetic control. We performed a comprehensive characterization of the metabolic and skeletal phenotype of diabetic TH mice and compared them to either their nondiabetic TH controls or the recommended SWR/J controls to evaluate their suitability to study diabetic bone disease in humans. Compared to both controls, male TH mice with T2DM exhibited higher blood glucose levels, weight along with impaired glucose tolerance and insulin sensitivity. TH mice with/without T2DM displayed higher cortical bone parameters and lower trabecular bone parameters in the femurs and vertebrae compared to SWR/J. The mechanical properties remained unchanged for all three groups except for a low-energy failure in TH mice with T2DM only compared to SWR/J. Histomorphometry analyses only revealed higher number of osteoclasts and osteocytes for SWR/J compared to both groups of TH. Bone turnover markers procollagen type 1 N-terminal propeptide (P1NP) and tartrate-resistant acid phosphatase (TRAP) were low for both groups of TH mice compared to SWR/J. Silver nitrate staining of the femurs revealed low number of osteocyte lacunar and dendrites in TH mice with T2DM. Three-dimensional assessment showed reduced lacunar parameters in trabecular and cortical bone. Notably, osteocyte morphology changed in TH mice with T2DM compared to SWR/J. In summary, our study highlights the utility of the TH mouse to study T2DM, but not necessarily T2DM-induced bone disease, as there were no differences in bone strength and bone cell parameters between diabetic and non-diabetic TH mice. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

2.
Braz Oral Res ; 37: e109, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37970929

RESUMEN

The objective of this study was to assess the remodeling-associated gene expression in the mandible of patients diagnosed with oral squamous cell carcinoma (OSCC), investigating the cortical microarchitecture, and their influence on disease-free survival (DFS) and overall survival (OS) rates. A total of twenty-four patients who underwent mandibulectomy for OSCC treatment had two bone fragments harvested from the mandible for gene expression (RANK, RANKL, OPG, and SOST), and microarchitecture analysis, including bone volume, surface, mineral density, degree of anisotropy, and fractal dimension. The prognosis of the patients was assessed. The results revealed that RANK, RANKL, and SOST were predominantly downregulated, while OPG was completely downregulated. Tumors located adjacent to the posterior region of the mandible (p = 0.02), with a bone mineral density below 1.03 g/cm3 HA (p = 0.001), and a bone volume less than 86.47% (p = 0.03) were associated with poor outcomes. In conclusion, bone-remodeling-associated genes exhibited downregulation in the cortex of the mandible in OSCC patients. Additionally, the tumor's location within the mandible, bone volume, and cortical bone mineral density were identified as factors impacting DFS.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Neoplasias de la Boca/genética , Neoplasias de la Boca/cirugía , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/cirugía , Carcinoma de Células Escamosas de Cabeza y Cuello , Pronóstico , Ligando RANK/genética , Expresión Génica , Osteoprotegerina/genética
3.
Radiat Environ Biophys ; 62(4): 511-518, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37792108

RESUMEN

The objectives of the present study were to assess Fractal Dimension (FD) values in the mandible cortical bone obtained from digital periapical radiographs (DPR), high-resolution microtomography (µCT), and cone-beam computed tomography (CBCT), by two processing methods: binarization (FD.b) and grayscale-based method (FD.f) and, finally, to identify the correlation among these values with other micro-architectural parameters. For this, a prospective study was conducted on 18 healthy individuals (mean age 23 ± 2.4 years old) who underwent third molar extraction. Pre-operative CBCT scans were conducted, bone fragments were removed from the retro-molar region, and DPR and µCT were performed on those bone samples. FD.b and FD.f values were calculated using three parasagittal sections for CBCT, one image for DPR, and three sections for µCT. The 3D bone microarchitecture was analyzed in µCT (voxel size: 19 µm). As a result, FD.b mean values of 1.55 ± 0.02 and 1.80 ± 0.01 were obtained for CBCT and µCT, respectively. Furthermore, FD.f mean values of 1.22 ± 0.12 for DPR, 0.99 ± 0.04 for CBCT, and 1.30 ± 0.07 for µCT were obtained. Both FD.b and FD.f values showed a good agreement. FD.f was negatively correlated with the standard deviation of the mean gray value (p = 0.003) for DPR and intra-cortical bone surface (p = 0.02) for µCT. In conclusion, image processing with or without binarization revealed different values for FD, although showing agreement. The grayscale-based method retrieved FD values correlated with the gray levels and the cortical porous network, which means that FD can be a valuable index for mandibular cortical bone evaluation. FD is associated with mineralization and microarchitecture. Nevertheless, there was no correlation between FD values obtained from low- (DPR) and high-resolution (µCT) X-ray modalities with FD obtained from the in vivo CBCT.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Fractales , Humanos , Adulto Joven , Adulto , Microtomografía por Rayos X/métodos , Estudios Prospectivos , Hueso Cortical , Mandíbula
4.
Acta Biomater ; 162: 254-265, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36878337

RESUMEN

Bone fragility is a profound complication of type 1 diabetes mellitus (T1DM), increasing patient morbidity. Within the mineralized bone matrix, osteocytes build a mechanosensitive network that orchestrates bone remodeling; thus, osteocyte viability is crucial for maintaining bone homeostasis. In human cortical bone specimens from individuals with T1DM, we found signs of accelerated osteocyte apoptosis and local mineralization of osteocyte lacunae (micropetrosis) compared with samples from age-matched controls. Such morphological changes were seen in the relatively young osteonal bone matrix on the periosteal side, and micropetrosis coincided with microdamage accumulation, implying that T1DM drives local skeletal aging and thereby impairs the biomechanical competence of the bone tissue. The consequent dysfunction of the osteocyte network hampers bone remodeling and decreases bone repair mechanisms, potentially contributing to the enhanced fracture risk seen in individuals with T1DM. STATEMENT OF SIGNIFICANCE: Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease that causes hyperglycemia. Increased bone fragility is one of the complications associated with T1DM. Our latest study on T1DM-affected human cortical bone identified the viability of osteocytes, the primary bone cells, as a potentially critical factor in T1DM-bone disease. We linked T1DM with increased osteocyte apoptosis and local accumulation of mineralized lacunar spaces and microdamage. Such structural changes in bone tissue suggest that T1DM speeds up the adverse effects of aging, leading to the premature death of osteocytes and potentially contributing to diabetes-related bone fragility.


Asunto(s)
Diabetes Mellitus Tipo 1 , Osteocitos , Humanos , Envejecimiento , Huesos , Apoptosis
5.
J Bone Miner Res ; 38(1): 131-143, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36331133

RESUMEN

Hyperthyroidism causes secondary osteoporosis through favoring bone resorption over bone formation, leading to bone loss with elevated bone fragility. Osteocytes that reside within lacunae inside the mineralized bone matrix orchestrate the process of bone remodeling and can themselves actively resorb bone upon certain stimuli. Nevertheless, the interaction between thyroid hormones and osteocytes and the impact of hyperthyroidism on osteocyte cell function are still unknown. In a preliminary study, we analyzed bones from male C57BL/6 mice with drug-induced hyperthyroidism, which led to mild osteocytic osteolysis with 1.14-fold larger osteocyte lacunae and by 108.33% higher tartrate-resistant acid phosphatase (TRAP) activity in osteocytes of hyperthyroid mice compared to euthyroid mice. To test whether hyperthyroidism-induced bone changes are reversible, we rendered male mice hyperthyroid by adding levothyroxine into their drinking water for 4 weeks, followed by a weaning period of 4 weeks with access to normal drinking water. Hyperthyroid mice displayed cortical and trabecular bone loss due to high bone turnover, which recovered with weaning. Although canalicular number and osteocyte lacunar area were similar in euthyroid, hyperthyroid and weaned mice, the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL)-positive osteocytes was 100% lower in the weaning group compared to euthyroid mice and the osteocytic TRAP activity was eightfold higher in hyperthyroid animals. The latter, along with a 3.75% lower average mineralization around the osteocyte lacunae in trabecular bone, suggests osteocytic osteolysis activity that, however, did not result in significantly enlarged osteocyte lacunae. In conclusion, we show a recovery of bone microarchitecture and turnover after reversal of hyperthyroidism to a euthyroid state. In contrast, osteocytic osteolysis was initiated in hyperthyroidism, but its effects were not reversed after 4 weeks of weaning. Due to the vast number of osteocytes in bone, we speculate that even minor individual cell functions might contribute to altered bone quality and mineral homeostasis in the setting of hyperthyroidism-induced bone disease. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Agua Potable , Hipertiroidismo , Osteólisis , Ratones , Masculino , Animales , Osteocitos , Fosfatasa Ácida Tartratorresistente , Ratones Endogámicos C57BL , Minerales , Hipertiroidismo/complicaciones
6.
Braz. oral res. (Online) ; 37: e109, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS, BBO - Odontología | ID: biblio-1520520

RESUMEN

Abstract The objective of this study was to assess the remodeling-associated gene expression in the mandible of patients diagnosed with oral squamous cell carcinoma (OSCC), investigating the cortical microarchitecture, and their influence on disease-free survival (DFS) and overall survival (OS) rates. A total of twenty-four patients who underwent mandibulectomy for OSCC treatment had two bone fragments harvested from the mandible for gene expression (RANK, RANKL, OPG, and SOST), and microarchitecture analysis, including bone volume, surface, mineral density, degree of anisotropy, and fractal dimension. The prognosis of the patients was assessed. The results revealed that RANK, RANKL, and SOST were predominantly downregulated, while OPG was completely downregulated. Tumors located adjacent to the posterior region of the mandible (p = 0.02), with a bone mineral density below 1.03 g/cm3 HA (p = 0.001), and a bone volume less than 86.47% (p = 0.03) were associated with poor outcomes. In conclusion, bone-remodeling-associated genes exhibited downregulation in the cortex of the mandible in OSCC patients. Additionally, the tumor's location within the mandible, bone volume, and cortical bone mineral density were identified as factors impacting DFS.

7.
J Bone Miner Res ; 37(11): 2259-2276, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36112316

RESUMEN

Diabetes mellitus (DM) is an emerging metabolic disease, and the management of diabetic bone disease poses a serious challenge worldwide. Understanding the underlying mechanisms leading to high fracture risk in DM is hence of particular interest and urgently needed to allow for diagnosis and treatment optimization. In a case-control postmortem study, the whole 12th thoracic vertebra and cortical bone from the mid-diaphysis of the femur from male individuals with type 1 diabetes mellitus (T1DM) (n = 6; 61.3 ± 14.6 years), type 2 diabetes mellitus (T2DM) (n = 11; 74.3 ± 7.9 years), and nondiabetic controls (n = 18; 69.3 ± 11.5) were analyzed with clinical and ex situ imaging techniques to explore various bone quality indices. Cortical collagen fibril deformation was measured in a synchrotron setup to assess changes at the nanoscale during tensile testing until failure. In addition, matrix composition was analyzed including determination of cross-linking and non-crosslinking advanced glycation end-products like pentosidine and carboxymethyl-lysine. In T1DM, lower fibril deformation was accompanied by lower mineralization and more mature crystalline apatite. In T2DM, lower fibril deformation concurred with a lower elastic modulus and tendency to higher accumulation of non-crosslinking advanced glycation end-products. The observed lower collagen fibril deformation in diabetic bone may be linked to altered patterns mineral characteristics in T1DM and higher advanced glycation end-product accumulation in T2DM. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Masculino , Humanos , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/diagnóstico por imagen , Diabetes Mellitus Tipo 2/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Huesos/metabolismo , Colágeno/metabolismo
8.
Bone ; 165: 116546, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36113843

RESUMEN

Diabetes mellitus is a metabolic disease affecting bone tissue at different length-scales. Higher fracture risk in diabetic patients is difficult to detect with common clinical fracture risk assessment due to normal or high bone mineral density in diabetic patients. The observed higher fracture risk despite normal to high areal bone mineral density in diabetic patients points towards impaired bone material quality. Here, we analyze tibial bone from individuals with type 2 diabetes mellitus using a multiscale-approach, which includes clinical and laboratory-based bone quality measures. Tibial cortical bone tissue from individuals with type 2 diabetes mellitus (T2DM) and age-matched healthy controls (n = 15 each) was analyzed with in situ impact indentation, dual energy X-ray absorptiometry (DXA), high resolution peripheral microcomputed tomography (HR-pQCT), micro-computed tomography (microCT), cyclic indentation, quantitative backscattered electron microscopy (qBEI), vibrational spectroscopy (Raman), nanoindentation, and fluorescence spectroscopy. With this approach, a high cortical porosity subgroup of individuals with T2DM was discriminated from two study groups: individuals with T2DM and individuals without T2DM, while both groups were associated with similar cortical porosity quantified by means of microCT. The high porosity T2DM group, but not the T2DM group, showed compromised bone quality expressed by altered cyclic indentation properties (transversal direction) in combination with a higher carbonate-to-amide I ratio in endocortical bone. In addition, in the T2DM group with high cortical porosity group, greater cortical pore diameter was identified with HR-pQCT and lower tissue mineral density using microCT, both compared to T2DM group. Micromechanical analyses of cross-sectioned osteons (longitudinal direction) with cyclic indentation, qBEI, and nanoindentation showed no differences between the three groups. High tibial cortical porosity in T2DM can be linked to locally altered bone material composition. As the tibia is an accessible skeletal site for fracture risk assessment in the clinics (CT, indentation), our findings may contribute to further understanding the site-specific structural and compositional factors forming the basis of bone quality in diabetes mellitus. Refined diagnostic strategies are needed for a comprehensive fracture risk assessment in diabetic bone disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fracturas Óseas , Humanos , Tibia , Microtomografía por Rayos X/métodos , Porosidad , Densidad Ósea , Hueso Cortical , Huesos/metabolismo , Absorciometría de Fotón , Amidas
9.
Cancers (Basel) ; 14(3)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35158823

RESUMEN

Breast cancer cells frequently metastasize to bone, where their interaction with bone remodeling cell types enhances osteolytic bone destruction. Importantly, however, whereas skeletal analyses of xenograft models are usually restricted to hindlimb bones, human skeletal metastases are far more frequent in the spine, where trabecular bone mass is higher compared to femur or tibia. Here, we addressed whether breast cancer cells injected into immunocompromised mice metastasize to the spine and if this process is influenced by the amount of trabecular bone. We also took advantage of mice carrying the Col1a1-Krm2 transgene, which display severe osteoporosis. After crossing this transgene into the immunocompromised NSG background we injected MDA-MB-231-SCP2 breast cancer cells and analyzed their distribution three weeks thereafter. We identified more tumor cells and clusters of different size in spine sections than in femora, which allowed influences on bone remodeling cell types to be analyzed by comparing tumor-free to tumor-burdened areas. Unexpectedly, the Col1a1-Krm2 transgene did not affect spreading and metastatic outgrowth of MDA-MB-231-SCP2 cells, suggesting that bone tumor interactions are more relevant at later stages of metastatic progression.

10.
Bone ; 152: 116074, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34174502

RESUMEN

Mechanosensitive osteocytes are central regulators of bone resorption and formation. However, during the formation of bone metastases, which arise as consequences of breast and prostate cancer and skew homeostatic bone remodeling to favor osteolytic, osteosclerotic or mixed lesions, only a paucity of data exists on tumor-associated osteocyte interaction. Herein, we used a suite of high-resolution imaging and histological techniques to evaluate the effect of osteotropic cancer on cortical bone microarchitecture. Confocal imaging highlighted a direct contact between tumor cells residing in the bone marrow and osteocytes. High-resolution microcomputed tomography revealed a 10-12% larger osteocyte lacuna volume in the presence of tumor cells at day 21 after intratibial injection of EO771-Luc breast and RM1-Luc prostate cancer cells. The 3D representative of the spatial distribution of cortical bone microporosity showed i) a regional accumulation of vascular canals and large lacunae with low connectivity in osteosclerotic regions of interest and ii) an absence of vascular canals and large lacunae in osteolytic regions. These findings pinpoint the relationship between the presence of tumor cells in the bone marrow microenvironment and osteocyte lacunar characteristics and cortical bone blood vessel structure.


Asunto(s)
Neoplasias , Osteocitos , Animales , Huesos , Hueso Cortical/diagnóstico por imagen , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Microtomografía por Rayos X
11.
Curr Osteoporos Rep ; 19(4): 391-402, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34117624

RESUMEN

PURPOSE OF REVIEW: We took an interdisciplinary view to examine the potential contribution of perilacunar/canalicular remodeling to declines in bone fracture resistance related to age or progression of osteoporosis. RECENT FINDINGS: Perilacunar remodeling is most prominent as a result of lactation; recent advances further elucidate the molecular players involved and their effect on bone material properties. Of these, vitamin D and calcitonin could be active during aging or osteoporosis. Menopause-related hormonal changes or osteoporosis therapies affect bone material properties and mechanical behavior. However, investigations of lacunar size or osteocyte TRAP activity with age or osteoporosis do not provide clear evidence for or against perilacunar remodeling. While the occurrence and potential role of perilacunar remodeling in aging and osteoporosis progression are largely under-investigated, widespread changes in bone matrix composition in OVX models and following osteoporosis therapies imply osteocytic maintenance of bone matrix. Perilacunar remodeling-induced changes in bone porosity, bone matrix composition, and bone adaptation could have significant implications for bone fracture resistance.


Asunto(s)
Remodelación Ósea , Osteoporosis Posmenopáusica/patología , Fracturas Osteoporóticas/patología , Anciano , Densidad Ósea , Progresión de la Enfermedad , Femenino , Humanos , Persona de Mediana Edad
12.
J Bone Miner Res ; 36(6): 1077-1087, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33596325

RESUMEN

Multiple genes are known to be associated with osteogenesis imperfecta (OI), a phenotypically and genetically heterogenous bone disorder, marked predominantly by low bone mineral density and increased risk of fractures. Recently, mutations affecting MESD, which encodes for a chaperone required for trafficking of the low-density lipoprotein receptors LRP5 and LRP6 in the endoplasmic reticulum, were described to cause autosomal-recessive OI XX in homozygous children. In the present study, whole-exome sequencing of three stillbirths in one family was performed to evaluate the presence of a hereditary disorder. To further characterize the skeletal phenotype, fetal autopsy, bone histology, and quantitative backscattered electron imaging (qBEI) were performed, and the results were compared with those from an age-matched control with regular skeletal phenotype. In each of the affected individuals, compound heterozygous mutations in MESD exon 2 and exon 3 were detected. Based on the skeletal phenotype, which was characterized by multiple intrauterine fractures and severe skeletal deformity, OI XX was diagnosed in these individuals. Histological evaluation of MESD specimens revealed an impaired osseous development with an altered osteocyte morphology and reduced canalicular connectivity. Moreover, analysis of bone mineral density distribution by qBEI indicated an impaired and more heterogeneous matrix mineralization in individuals with MESD mutations than in controls. In contrast to the previously reported phenotypes of individuals with OI XX, the more severe phenotype in the present study is likely explained by a mutation in exon 2, located within the chaperone domain of MESD, that leads to a complete loss of function, which indicates the relevance of MESD in early skeletal development. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)..


Asunto(s)
Osteogénesis Imperfecta , Densidad Ósea/genética , Niño , Mutación del Sistema de Lectura , Homocigoto , Humanos , Chaperonas Moleculares , Mutación/genética , Osteogénesis Imperfecta/diagnóstico por imagen , Osteogénesis Imperfecta/genética , Fenotipo
13.
Bone ; 140: 115556, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32730921

RESUMEN

Type 2 diabetes mellitus (T2DM), a metabolic disease on the rise, is associated with substantial increase in bone fracture risk. Because individuals with T2DM have normal or high bone mineral density (BMD), osteodensitometric measurements of BMD do not predict fracture risk with T2DM. Here, we aim to identify the underlying mechanism of the diabetes-induced fracture risk using a high-resolution multi-scale analysis of human cortical bone with special emphasis on osseous cellular activity. Specifically, we show increased cortical porosity in a subgroup of T2DM individuals accompanied by changed mineralization patterns and glycoxidative damage to bone protein, caused by non-enzymatic glycation of bone by reducing sugar. Furthermore, the high porosity T2DM subgroup presents with higher regional mineralization heterogeneity and lower mineral maturity, whereas in the T2DM subgroup regional higher mineral-to-matrix ratio was observed. Both T2DM groups show significantly higher carboxymethyl-lysine accumulation. Our results show a dimorphic pattern of cortical bone reorganization in individuals afflicted with T2DM and hence provide new insight into the diabetic bone disease leading to increased fracture risk.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fracturas Óseas , Densidad Ósea , Hueso Cortical/diagnóstico por imagen , Fémur/diagnóstico por imagen , Humanos
14.
Artículo en Inglés | MEDLINE | ID: mdl-32499755

RESUMEN

Denosumab is a potent osteoclast inhibitor targeted to prevent osteoporotic bone loss and thereby reduce fractures in the aging population. Recently, an elevated risk of rebound fractures following denosumab discontinuation was identified, unless patients were transitioned to an alternative antiresorptive medication. How denosumab affects the interaction of mechanosensitive osteocytes and bone quality remains unknown. We hypothesized that denosumab influences osteocyte function contributing to bone reorganization and increased fractures during discontinuation. Bone quality and osteocytes were assessed in archived iliac crest bone biopsies obtained from patients with high fracture occurrence from 2011 to 2016. Biopsies were obtained due to high fracture occurrence prior and during osteoporosis therapy from (i) patients with at least two semiannual subcutaneous injections of 60 mg denosumab, (ii) patients with rebound fractures during discontinuation, and (iii) patients of a treatment-naive group. In total, biopsies from 43 individuals were analyzed (mean age, 65.5 ± 12.1 years). Our results showed that during denosumab treatment, iliac cortical bone had a higher bone tissue hardness compared to treatment-naive bone (p = 0.0077) and a higher percentage of mineralized osteocyte lacunae (p = 0.0095). The density of empty osteocyte lacunae was higher with denosumab compared to treatment-naive (p = 0.014) and remained high in trabecular bone during discontinuation (p = 0.0071). We conclude that during denosumab treatment, increased bone hardness may contribute to improved fracture resistance. In biopsies from patients with high fracture occurrence, denosumab treatment reduced osteocyte viability, an effect that persisted during treatment discontinuation. High-resolution imaging of osteocyte viability indicates a role for osteocytes as a potential future mechanistic target to understand rebound bone loss and increased fractures with denosumab discontinuation.


Asunto(s)
Conservadores de la Densidad Ósea/efectos adversos , Densidad Ósea/efectos de los fármacos , Resorción Ósea/patología , Denosumab/efectos adversos , Osteoporosis/tratamiento farmacológico , Síndrome de Abstinencia a Sustancias/etiología , Privación de Tratamiento/estadística & datos numéricos , Anciano , Conservadores de la Densidad Ósea/administración & dosificación , Resorción Ósea/inducido químicamente , Denosumab/administración & dosificación , Femenino , Estudios de Seguimiento , Fracturas Múltiples/inducido químicamente , Fracturas Múltiples/patología , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Síndrome de Abstinencia a Sustancias/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...